Optimal Stop-loss Reinsurance Strategy under Distortion Risk Measures

Yunzhou Chen, Hirbod Assa

Institute for Financial and Actuarial Mathematics,
University of Liverpool

sgyche14@liv.ac.uk

The 3rd European Actuarial Journal Conference & Summer School

September 2016
Overview

1. Preliminaries and notations
 - Distortion Risk Measures
 - Assumptions
 - Discrete Time 'Surplus' Model
 - Barrier Dividend Policy

2. Optimization Without Solvency Condition
 - Static Case
 - Dynamic Case

3. Optimization With Solvency Condition

4. Example under Value at Risk
Preliminaries and notations

Definition (Distortion Risk Measure)

\[\rho^\Pi(X) = \int_0^1 \text{VaR}_s(X) d\Pi(s), \]

where Value at Risk is defined as

\[\text{VaR}_\alpha(X) = \inf\{x \in \mathbb{R} | \mathbb{P}(X \leq x) \geq \alpha \} \]

and \(\Pi:[0,1] \rightarrow [0,1] \) is a distortion function which is a non-decreasing and cádlág function.
Examples of Distortion Risk Measures

- Value at Risk (VaR) at the confidence level α with distortion function $\Pi(u) = 1_{[\alpha,1]}(u)$.
- Conditional Value at Risk (CVaR) with distortion function $\Pi(u) = \frac{u - \alpha}{1 - \alpha} 1_{[\alpha,1]}(u)$ and distortion form as
 \[
 \text{CVaR}_\alpha(X) = \frac{1}{1 - \alpha} \int_{\alpha}^{1} \text{VaR}_s(X) \, ds
 \]

- Wang’s Premium with Wang’s transformation $g_\gamma(u) = \Phi(\Phi^{-1}(u) + \gamma)$ as the distortion function, where $\gamma \in \mathbb{R}$ is a real parameter and Φ is the cumulative distribution function of standard Normal distribution. Use the properties of Φ, the dual distortion function can be written as $\Pi_\gamma(u) = 1 - g_\gamma(1 - u) = \Phi(\Phi^{-1}(u) - \gamma)$
Preliminaries and notations

Assumptions

1. $F_{X_{t+1}}(.)$ is the strictly increasing cdf of total claims X_{t+1} from $(t, t + 1]$ and X_i are i.i.d.

2. The shareholders’ benefits is the first priority then consider on both cedent’s point of view and the pressure from the reinsurance company.
Preliminaries and notations

Assumptions

1. $F_{X_{t+1}}(.)$ is the strictly increasing cdf of total claims X_{t+1} from $(t, t + 1]$ and X_i are i.i.d.

2. The shareholders' benefits is the first priority then consider on both cedent’s point of view and the pressure from the reinsurance company.

Capped Stop-loss Reinsurance

The claims covered by the capped stop-loss reinsurance contract are

$$R_{a_t}(X_{t+1}) = \begin{cases} X_{t+1}, & X_{t+1} < a_t \\ a_t, & X_{t+1} \geq a_t \end{cases}$$

where a_t is the retention level decided at time t covering the total claims occurring in $(t, t + 1]$.

Preliminaries and notations

Discrete Time 'Surplus' Model

U_{t+1} is the balance of the insurance company before deciding the reinsurance retention level which covers the claims of next period and paying out the dividends, i.e.,

$$U_{t+1} = \frac{U_t - D_t}{\beta} + c - (X_{t+1} - R_a(X_{t+1})) - \rho \Pi [R_a(X_{t+1})] \quad (4)$$

for $t = 0, 1, 2, \cdots$, where D_t is the dividends paid at time t, $\beta = \frac{1}{1+r}$ is a discounted factor and r is the interest rate per unit time.
Preliminaries and notations

Barrier Dividend Policy

The barrier dividend policy at time \(t + 1 \) is set by

\[
D_{t+1} = (U_{t+1} - b)_+ =: H[U_{t+1}]
\]

where \((U_{t+1} - b)_+ = \max\{U_{t+1} - b, 0\}, \ b \in \mathbb{R}\) is the known constant dividend barrier.

Notice:

Equation (4) \iff

\[
U_{t+1} = \frac{U_t - H[U_t]}{\beta} + c - (X_{t+1} - R_a(X_{t+1})) - \rho \Pi[R_a(X_{t+1})]
\]

(6)
Optimization Without Solvency Condition

Static Case

The objective function is

$$\max_a \mathbb{E} [H(U_1)] = \max_a \mathbb{E} [(U_1 - b)_+]$$ (7)

Denote $K := \frac{u_0 - H(u_0)}{\beta} + c - b \in \mathbb{R}$ so the discrete time surplus can be rewritten as

$$U_1 = K + b - (X - a)_+ - \rho \Pi [R_a(X)]$$ (8)

And the objective function can be simplified in the static model as

$$\max_a \mathbb{E} \left[(K - (X - a)_+ - \rho \Pi [R_a(X)])_+ \right]$$ (9)
The expectation now can be rewritten in the form of integrals as

\[
\mathbb{E} \left[(K - (X - a) \mathbbm{1}\{K > \rho \Pi[R_a(X)]\})^+ \right] \\
= (1\{K > \rho \Pi[R_a(X)]\}) \left[\int_0^a (K - \rho \Pi[R_a(X)])dF_X(x) \right. \\
+ \int_a^{K+a-\rho \Pi[R_a(X)]} (K - (X - a) - \rho \Pi[R_a(X)])dF_X(x) \\
+ \int_a^{K+a} (K - (X - a) - \rho \Pi[R_a(X)])dF_X(x) \right]
\]
When $K > \rho \Pi[R_a(X)]$ and

$$\frac{\partial}{\partial a} \mathbb{E} \left[(K - (X - a)_+ - \rho \Pi[R_a(X)])_+ \right] = 0 \quad (10)$$

We have

$$F_X(a) = \Pi(F_X(a))F_X(a + \frac{u_0 - H(u_0)}{\beta} + c - b - \rho \Pi[R_a(X)])$$

When $K \leq \rho \Pi[R_a(X)]$, $\mathbb{E}[H(U_1)] = 0$. The optimal stop-loss retention level, a, should satisfy

$$\rho \Pi[R_a(X)] = \frac{u_0 - H(u_0)}{\beta} + c - b \quad (11)$$
Optimization Without Solvency Condition

Dynamic Case

The objective function is

$$\max_{\{a_s\}_{s=t}^{\infty}} \mathbb{E}_t \left[\sum_{s=t}^{\infty} \beta^{s-t} H(U_s) \right]$$

(12)

Subject to the budget constraint:

$$U_{t+1} = \frac{U_t - H(U_t)}{\beta} + c - (X_{t+1} - R_at(X_{t+1})) - \rho \Pi [R_at(X_{t+1})]$$

(13)
Since we have the similar framework as in Section 3.2 of the book by Ljungqvist and Sargent (2004), let the value function be

\[
V(U_t) = \max_{\{a_s\}_{s=t}^{\infty}} \mathbb{E}_t \left[\sum_{s=t}^{\infty} \beta^{s-t} H(U_{s+1}) \right]
\]

\[
= \max_{a_t} \mathbb{E}_t \left[H(U_t) + \max_{\{a_s\}_{s=t+1}^{\infty}} \mathbb{E}_{t+1} \left[\sum_{s=t+1}^{\infty} \beta^{s-t} H(U_{s+1}) \right] \right]
\]

\[
= \max_{a_t} \left\{ H(U_t) + \beta \mathbb{E}_t \left[V(g[U_t, a_t; X_{t+1}]) \right] \right\}
\]

i.e.

\[
V(u) = \max_{a} \left\{ H(u) + \beta \mathbb{E}_t \left[V(g[u, a; X]) \right] \right\}
\]

(14)
Take the partial differential with respect to the control variable a

$$0 = \beta \mathbb{E}_t \left[V'(g[u, a; X]) \frac{\partial g[u, a; X]}{\partial a} \right]$$

$$\Leftrightarrow 0 = \mathbb{E}_t \left[V'(g[u, a; X]) \left(1_{\{X \geq a\}} - [1 - \pi(F_X(a))] \right) \right]$$

Assume that $a_t = h(U_t)$ which means that the objective policy is a function of the corresponding surplus. Note $h(.)$ is a deterministic function. Thus,

$$V(u) = \max_a \{ H(u) + \beta \mathbb{E}_t [V(g[u, h(u); X])] \}$$

Apply the Envelope Theorem and differentiate it with respect to u to obtain

$$V'(u) = H'(u) + \beta \mathbb{E}_t \left[V'(g[u, h(u); X]) \left(\frac{\partial g[u, h(u); X]}{\partial u} + \frac{\partial g[u, h(u); X]}{\partial h} \frac{\partial h(u)}{\partial u} \right) \right]$$
Follow the work from Benveniste and Scheinkman (1979), we assume that next period surplus can be rewritten as $U_{t+1} = g[h(u); X]$. Therefore,

$$V'(u) = H'(u) + \beta \mathbb{E}_t \left[V'(g) \frac{\partial g[h(u); X]}{\partial h} \frac{\partial h(u)}{\partial u} \right] \quad (17)$$

Use the first order condition in equation (15) and apply it to latter period surplus, we have

$$V'(u) = H'(u) \iff V'(g) = H'(g) \quad (18)$$

Take it back to the equation (16), we have

$$0 = \mathbb{E}_t \left[H'(g[u, a; X]) \left(\mathbf{1}\{X \geq a\} - [1 - \Pi(F_X(a))] \right) \right]
= \mathbb{E}_t \left[\mathbf{1}\{g \geq b\} \left(\mathbf{1}\{X \geq a\} - [1 - \Pi(F_X(a))] \right) \right]
$$

Equivalently,

$$\mathbb{P}[g \geq b, X \geq a|u][\Pi(F_X(a))] = \mathbb{P}[g \geq b, X < a|u][1 - \Pi(F_X(a))] \quad (19)$$
For the conditional probability on the left hand side,

\[P[g \geq b, X \geq a | u] \]

\[= \mathbb{P}[a \leq X \leq a + \frac{u - H(u)}{\beta} + c - \rho \Pi [R_a(X)] - b] \]

\[= F_X \left(\frac{u - H(u)}{\beta} + c + a - \rho \Pi [R_a(X)] - b \right) - F_X (a) \]

where \(\frac{u - H(u)}{\beta} + c - \rho \Pi [R_a(X)] - b \geq 0 \), otherwise,

\[P[g \geq b, X \geq a | u] = 0. \]

For the conditional probability on the right hand side,

\[P[g \geq b, X < a | u] \]

\[= P \left[\frac{u - H(u)}{\beta} + c - \rho \Pi [R_a(X)] - b \geq 0, X < a \right] \]
Consider two cases here.

1. If \(\frac{u - H(u)}{\beta} + c - \rho \Pi[R_a(X)] - b > 0 \),
 \[P[g \geq b, X < a | u] = F_X(a) \] and
 \[F_X(a) = F_X(a + \frac{u - H(u)}{\beta} + c - \rho \Pi[R_a(X)] - b) \Pi(F_X(a))] \] \((20) \)

2. If \(\frac{u - H(u)}{\beta} + c - \rho \Pi[R_a(X)] - b \leq 0 \),
 \[P[g \geq b, X \geq a | u] = P[g \geq b, X < a | u] = 0. \] Therefore,
 \[P[g \geq b | u] = P[g \geq b, X \geq a | u] + P[g \geq b, X < a | u] = 0 \]
 which means that knowing the information at time \(t \), there is no possibility of paying dividends in the next period. The optimal retention level needs to satisfy
 \[\rho \Pi[R_a(X)] = \frac{u - H(u)}{\beta} + c - b \] \((21) \)
Myopic Policy
Optimization With Solvency Condition

Solvency Condition

\[
0 \leq \rho^\Gamma (\frac{-U_{t+1}}{\beta}) = \frac{U_t - H(U_t)}{\beta} - \rho_{a_t}(X_{t+1}) - \rho^\Gamma(X_{t+1} - R_{a_t}(X_{t+1})) + c
\]
Brief Steps to the Results

Using Lagrangian multiplier λ, Subject to

$$
\lambda \left[\rho \Gamma \left[R_a(X) \right] + \rho \Gamma (X) - \rho \Gamma \left[R_a(X) \right] - K - b \right] = 0
$$

$$
\lambda \geq 0
$$
Brief Steps to the Results

Using Lagrangian multiplier λ, Subject to

$$\lambda \left[\rho \Pi[R_a(X)] + \rho \Gamma(X) - \rho \Gamma[R_a(X)] - K - b \right] = 0$$

$\lambda \geq 0$

1. $\lambda = 0$, the same results in Theorem 8.

2. $\lambda > 0$ and $K \leq \rho \Pi[R_a(X)]$, $\Gamma(F_X(a)) = \Pi(F_X(a))$ need to be held.

3. $\lambda > 0$ and $K > \rho \Pi[R_a(X)]$,

$$\lambda = \frac{\Pi(F_X(a))F_X(K + a - \rho \Pi[R_a(X)]) - F_X(a)}{\Gamma(F_X(a)) - \Pi(F_X(a))} \text{ when }$$

$\Gamma(F_X(a)) \neq \Pi(F_X(a))$; or both

$\Pi(F_X(a))F_X(K + a - \rho \Pi[R_a(X)]) = F_X(a)$ and

$\Gamma(F_X(a)) = \Pi(F_X(a))$ holds.
Example under Value at Risk

Consider both distortion risk measures for solvency condition and reinsurance premium as Value at Risk with different confidence level γ and α respectively, i.e., $\rho^\Gamma(.) = \text{VaR}_\gamma(.)$ and $\rho^\Pi(.) = \text{VaR}_\alpha(.)$, the corresponding distortion functions are $\Gamma(u) = 1_{[\gamma,1]}(u)$ and $\Pi(u) = 1_{[\alpha,1]}(u)$.
Consider both distortion risk measures for solvency condition and reinsurance premium as Value at Risk with different confidence level γ and α respectively, i.e., $\rho^\Gamma(.) = \text{VaR}_\gamma(.)$ and $\rho^\Pi(.) = \text{VaR}_\alpha(.)$, the corresponding distortion functions are $\Gamma(u) = 1_{[\gamma,1]}(u)$ and $\Pi(u) = 1_{[\alpha,1]}(u)$. The algorithm for finding the optimal stop-loss retention level follows steps:

1. Check if $K(u, c, b) > 0$, then $a^* = 0$ while $\max \mathbb{E}[H(U_1)] = \int_0^K F_X(x)dx$; Otherwise, go to step 2.

2. Check if $F_X^{-1}(\alpha) = K$ or $F_X^{-1}(\alpha) = K + b$, then $a^* \in [\text{VaR}_{\alpha \vee \gamma}(X), \infty)$ while $\max \mathbb{E}[H(U_1)] = 0$; Otherwise, go to step 3.

3. Check if $F_X^{-1}(\gamma) = K + b$, then $a^* \in [K, \text{VaR}_{\alpha \wedge \gamma}(X)]$ while $\max \mathbb{E}[H(U_1)] = 0$; Otherwise, $a^* \in [K, \infty)$ while $\max \mathbb{E}[H(U_1)] = 0$.

Thank you for Your Attention.