

Actuarial Research Centre

Institute and Faculty of Actuaries

Prediction of settlement delay in critical illness insurance

George Streftaris Heriot-Watt University, Edinburgh

3rd EAJ, Lyon, September 2016

Work with:

Erengul Dodd (Ozkok), Southampton U

Research funded by UK Institute & Faculty of Actuaries projects:

- 2012-14 Incorporating model and parameter uncertainty in rate graduation and pricing for CII
- 2016-20 Modelling, Measurement and Management of Longevity and Morbidity Risk

Plan:

- 1. Critical Illness Insurance (CII) and data
- 2. Diagnosis-to-settlement delay distribution modelling
- 3. Model assessment and comparison
- 4. Prediction of settlement delay

Critical Illness: Policy description

- Fixed term policy, usually ceasing at age 65
- A fixed sum insured payable on the diagnosis of one of a specified list of critical illnesses
- Policies are often sold together with a term or an endowment insurance
- Benefit type: Full acceleration (FA): Death is included as a critical illness (88%)
 Stand alone (SA): Death is not included as a critical illness (12%)
- Covers:

Cancer; Death; Heart attack; Stroke; Multiple Sclerosis; Total & permanent disability; Coronary artery bypass graft; Kidney failure; Major organ transplant; Other.

CI data for 1999 – 2005 supplied to Heriot–Watt U by the CMI:

- Details of policies inforce at the start and end of each year
 - \rightarrow 18 000 000 policy-years of exposure
- Details of claims settled in 1999 2005
 - \rightarrow 19 000 claims

Covariate	Number of levels
Age	Numerical
Sex	2 (Female = 0)
Smoker status	2 (NS = 0)
Policy duration	Numerical
Office	13
Benefit type	2 (FA = 0 & SA)
Benefit amount	Numerical
Policy type	2 (Single/Joint life = 0)
Settlement year	Numerical
Cause	10
C Churchtonia II mint Mi	the II Due direction of a stations and delaw in CII

Covariates in the data:

G Streftaris – Heriot-Watt U

Modelling diagnosis to settlement delay

- Diagnosis is the **insured event** and there is a **delay** between **diagnosis** and **settlement**
 - diagnosis date often not recorded (18%); need to model it
 - does delay also depend on risk factors?
- Observed data: Mean Delay = 185 days; SD Delay = 263 days

Modelling diagnosis to settlement delay

• Diagnosis is the **insured event** and there is a **delay** between **diagnosis** and **settlement**

diagnosis date often not recorded (18%); need to model itdoes delay also depend on risk factors?

• Observed data: Mean Delay = 185 days; SD Delay = 263 days

• Fit a delay distribution F(d; x, z):

 $F(d; x, z) = \Pr[\text{claim diagnosed age } x, \text{ covariates } z, \text{ will be settled within } d \text{ days}]$

• Also take into account uncertainty

Modelling diagnosis to settlement delay

• Diagnosis is the **insured event** and there is a **delay** between **diagnosis** and **settlement**

diagnosis date often not recorded (18%); need to model itdoes delay also depend on risk factors?

- Observed data: Mean Delay = 185 days; SD Delay = 263 days
- Fit a delay distribution F(d; x, z):

 $F(d; x, z) = \Pr[\text{claim diagnosed age } x, \text{ covariates } z, \text{ will be settled within } d \text{ days}]$

• Also take into account uncertainty

Diagnosis-to-settlement Delay (D) distribution modelling

Include risk factors (covariates, z) in GLM-type setting:

*M*₁: $D_i \sim \text{Generalised Beta2}(\alpha, \tau, \gamma, s_i)$

$$f_D(d_i) = \frac{\Gamma(\alpha + \gamma)}{\Gamma(\alpha)\Gamma(\gamma)} \frac{\tau(d_i/s_i)^{\tau\gamma}}{d_i \left[1 + (d_i/s_i)^{\tau}\right]^{\alpha + \gamma}}$$
$$E(D_i) = \exp(\eta_i) = \exp\left(\beta_0 + \sum_{j=1}^8 \beta_j z_{ij} + \beta_{9,k} + \beta_{10,l}\right)$$

with s_i given as function of η_i , α , τ , γ .

*M*₂: $D_i \sim \text{Burr}(\alpha, \tau, s_i)$ As GB2 above, with $\gamma = 1$.

```
M<sub>3</sub>: D_i \sim \text{Pareto}(\alpha, s_i)
As GB2 above, with \tau = \gamma = 1.
```

Diagnosis-to-settlement Delay (D) distribution modelling

Include **risk factors** (covariates, *z*) in **GLM-type setting**:

*M*₁: $D_i \sim \text{Generalised Beta2}(\alpha, \tau, \gamma, s_i)$

$$f_D(d_i) = \frac{\Gamma(\alpha + \gamma)}{\Gamma(\alpha)\Gamma(\gamma)} \frac{\tau(d_i/s_i)^{\tau\gamma}}{d_i \left[1 + (d_i/s_i)^{\tau}\right]^{\alpha + \gamma}}$$
$$E(D_i) = \exp(\eta_i) = \exp\left(\beta_0 + \sum_{j=1}^8 \beta_j z_{ij} + \beta_{9,k} + \beta_{10,l}\right)$$

with s_i given as function of η_i , α , τ , γ .

*M*₂: $D_i \sim \text{Burr}(\alpha, \tau, s_i)$ As GB2 above, with $\gamma = 1$.

 M_3 : $D_i \sim \text{Pareto}(\alpha, s_i)$

As GB2 above, with $\tau = \gamma = 1$.

Delay (*D*) distribution modelling (cont.)

 $M_4: D_i \sim \mathrm{LN}(\mu_i, \sigma^2)$

$$E(D_i) = \exp(\eta_i + \sigma^2/2)$$

where

$$\eta_i = \mu_i = \beta_0 + \sum_{j=1}^8 \beta_j z_{ij} + \beta_{9,k} + \beta_{10,l}$$

*M*₅: $D_i \sim \text{Transformed}$ (generalised) $\text{Gamma}(\alpha, \tau, s_i)$

$$f_D(d_i) = rac{ au(d_i/s_i)^{lpha au} \exp(-d_i/s_i)^{ au}}{d_i \Gamma(lpha)} \ , \ E(D_i) = \exp(\eta_i)$$

where η_i as above and s_i given as function of η_i, α, τ .

Model fitting – without covariates

Fit the 5 null models under a Bayesian framework using Markov chain Monte Carlo

Figure: Left: histogram of the observed delay (in days). Right: CDF of observed delay (in days, on log scale) and fitted distributions.

- GB2 and Burr similar fit especially at tails
- Pareto least successful

Model fitting – with covariates

Include risk factors (covariates) *z*: age, sex, smoking, cause etc ... **Posterior estimates of GB2 parameters**

Posterior estimates here support GB2 as opposed to: Pareto ($\tau = \gamma = 1$), or Burr ($\gamma = 1$).

Covariate coefficient estimates

Figure: Posterior means (dots) and 95% credible intervals (bars) of β 's.

- Similar estimates, especially between GB2 and Burr
- GB2 more efficient with missing values (smaller sd not shown here)
- Some covariates more affected by tail structure of distn (eg settlement year, pol duration)

Important for prediction, but not straightforward - especially with missing data.

DIC (with missing values) much criticised.

	GB2	Burr	GG	Log-normal	Pareto
DIC ₄	230,952	231,251	233,262	237,798	237,665
DIC ₅	231,677	232,002	233,835	238,765	238,297
DIC ₈	191,037	191,315	193,065	194,796	196,060

Instead consider:

- Latent likelihood ratio (LLR) tests
- Bayesian latent 'residuals' (BLR) based on cdf

Model assessment & comparison (cont)

- Both methods originally developed for epidemics (eg Streftaris & Gibson, 2012)
- Result in post distns of *p*-values
- Evidence against a model coming from post distn concentrated close to zero.

Latent likelihood ratio tests:

When comparing Burr to GB2 model, all $\pi_{\Lambda}^{(t)} \approx 0$ \longrightarrow overwhelming evidence in favour of GB2

Bayesian latent 'residuals':

Under Burr 100% of π_Q values smaller than 5×10^{-9} \longrightarrow again evidence against Burr

Model assessment & comparison (cont)

- Both methods originally developed for epidemics (eg Streftaris & Gibson, 2012)
- Result in post distns of *p*-values
- Evidence against a model coming from post distn concentrated close to zero.

Latent likelihood ratio tests:

When comparing Burr to GB2 model, all $\pi_{\Lambda}^{(t)} \approx 0$ \longrightarrow overwhelming evidence in favour of GB2

Bayesian latent 'residuals':

Under Burr 100% of π_Q values smaller than 5×10^{-9} \rightarrow again evidence against Burr

Variable selection with GB2

 $2^{10} = 1024$ possible models – Use Gibbs variable selection Model probabilities:

Model		$\hat{f}(m m{D})$	$PO(m_{977}/.)$
m_{977}	$z_5 + z_7 + z_8 + z_9 + z_{10}$	0.1996	1.00
m_{981}	$z_3 + z_5 + z_7 + z_8 + z_9 + z_{10}$	0.1843	1.08
m_{978}	$z_1 + z_5 + z_7 + z_8 + z_9 + z_{10}$	0.1503	1.33
m_{982}	$z_1 + z_3 + z_5 + z_7 + z_8 + z_9 + z_{10}$	0.1007	1.98
m_{979}	$z_2 + z_5 + z_7 + z_8 + z_9 + z_{10}$	0.0449	4.44

(1) age; (2) sex; (3) benefit (FA/SA); (4) smoking; (5) policy type;
(6) year; (7) amount; (8) duration; (9) office; (10) cause

Small difference in PO and probabilities among first 4 models \longrightarrow Use model averaging for prediction

Variable selection with GB2

 $2^{10} = 1024$ possible models – Use Gibbs variable selection Model probabilities:

Model		$\hat{f}(m m{D})$	$PO(m_{977}/.)$
m_{977}	$z_5 + z_7 + z_8 + z_9 + z_{10}$	0.1996	1.00
m_{981}	$z_3 + z_5 + z_7 + z_8 + z_9 + z_{10}$	0.1843	1.08
m_{978}	$z_1 + z_5 + z_7 + z_8 + z_9 + z_{10}$	0.1503	1.33
m_{982}	$z_1 + z_3 + z_5 + z_7 + z_8 + z_9 + z_{10}$	0.1007	1.98
m_{979}	$z_2 + z_5 + z_7 + z_8 + z_9 + z_{10}$	0.0449	4.44

(1) age; (2) sex; (3) benefit (FA/SA); (4) smoking; (5) policy type;
(6) year; (7) amount; (8) duration; (9) office; (10) cause

Small difference in PO and probabilities among first 4 models \longrightarrow Use model averaging for prediction

Prediction of Claim Delay

Consider following **missing** delays and post **predictions** under the 'best' (m_{977}) and average model:

	1	2	3	4
Туре	JL	JL	JL	JL
£	50 000	50 000	5 000	115 000
Durn (yrs)	> 5	<1	> 5	> 5
Office	2	2	2	2
Cause	Death	Death	Death	Death
Туре	FA	FA	FA	FA
	Prediction			
<i>m</i> ₉₇₇	221.2 (203.6, 240.2)	271.6 (251.4, 292.7)	234.6 (216.8, 254.2)	214.1 (196.2, 232.7)
Average model	220.3 (202.9, 236.2)	270.4 (249.9, 289.1)	233.5 (215.0, 250.4)	213.3 (196.2, 228.9)

Boldface: changes from reference case (1&6)

15/18

Prediction of Claim Delay (cont.)

Missing delays and post **predictions** under the 'best' (m_{977}) and average model:

	5	6	7	8
Туре	JL	SL	SL	SL
£	50 000	50 000	50 000	50 000
Durn (yrs)	> 5	> 5	> 5	> 5
Office	2	2	11	2
Cause	MS	Death	Death	Cancer
Benefit	FA	FA	FA	SA
	Prediction			
m ₉₇₇	403.4 (368.4, 440.6)	244.6 (225.5, 265.1)	152.6 (141.1, 163.6)	323.4 (298.9, 351.0)
Average model	402.4 (366.8, 439.3)	244.1 (224.8, 262.8)	152.7 (141.2, 163.6)	315.8 (292.2, 339.4)

Boldface: changes from reference case (1&6)

16/18

Summary

- Estimation & prediction of diagnosis-to-settlement delay important in CII
- Bayesian analysis accounts for non-recorded diagnosis dates
- Previous work has shown that estimates of delay are model-sensitive
- 4-parameter **GB2 distn** most suitable (as shown by using various methods)
- Variable selection leads to **model-averaged prediction** for non-recorded delays
- Results here feed in work on CII claim rates
- Future/continuing work to involve more recent data

More details in:

Ozkok, E., Streftaris, G., Waters, H.R., and Wilkie, A.D. (2012) Bayesian modelling of the time delay between diagnosis and settlement for Critical Illness Insurance using a Burr generalised-linear-type model. *Insurance: Mathematics & Economics*, 50, 266–279.

Streftaris G. and Gibson, G.J. (2012) Non-exponential tolerance to infection in epidemic systems modelling, inference and assessment, *Biostatistics*, 13, 580593

Ozkok, E., Streftaris, G., Waters, H.R., and Wilkie, A.D. (2014) Modelling critical illness claim diagnosis rates I: Methodology. *Scandinavian Actuarial Journal*, 2014:5, 439–457.

Dodd, E., Streftaris, G., Waters, H.R. and Stott, A.D. (2015) The effect of model uncertainty on the pricing of critical illness insurance. *Annals of Actuarial Science*, 9, 108–133.

Dodd, E. and Streftaris, G. (2016) Prediction of settlement delay in critical illness insurance claims using GB2 distribution. To appear in *Journal of the Royal Statistical Society C*. Model fitting – with covariates

Include risk factors (covariates) *z*: age, sex, smoking, cause etc ... GL-type model linked to the mean of the GB2 through

$$\log (E(D_i)) = \eta_i = \beta_0 + \sum_{j=1}^8 \beta_j z_{ij} + \beta_{9 O_i} + \beta_{10 C_i}$$

Use MCMC to draw samples from posterior

$$f(\alpha, \tau, \gamma, \boldsymbol{\beta} | \boldsymbol{D}) \propto f(\boldsymbol{D} | \alpha, \tau, \gamma, \boldsymbol{\beta}) f(\alpha) f(\tau) f(\gamma) f(\boldsymbol{\beta})$$

with (mainly vague) priors:

$$\begin{split} &\alpha \sim \text{Gamma}(1, 0.01) I(1/\tau, \infty) \\ &\tau \sim \text{Gamma}(1, 0.01) \\ &\gamma \sim \text{Gamma}(1, 0.01) \\ &\beta_j \sim \text{N}(0, 10^4), j = 1, \dots, 8 \\ &\beta_{9 \, O_i} \sim \text{N}(0, 10^4), O_i = 2, \dots, 13 \\ &\beta_{10 \, C_i} \sim \text{N}(0, 10^4), C_i = 2, \dots, 10. \end{split}$$

Latent likelihood ratio (LLR) tests

Originally developed for epidemics (eg Streftaris & Gibson, 2012)

- Fit model \mathcal{M}_1 (eg Burr) under Bayesian estimation
- For alternative model, \mathcal{M}_2 (GB2), compute ML value
- Calculate LLR at iteration *t* of MCMC

$$\Lambda^{(t)} = \frac{L_1\left(\alpha^{(t)}, \tau^{(t)}, \boldsymbol{\beta}^{(t)}; \boldsymbol{D}\right)}{L_2\left(\dot{\alpha}, \dot{\tau}, \dot{\gamma}, \dot{\boldsymbol{\beta}}; \boldsymbol{D}\right)}$$

where $\alpha^{(t)}, \tau^{(t)}, \beta^{(t)}$ are MCMC posterior estimates at iteration (*t*) and dotted values are MLEs

• Evidence against \mathcal{M}_1 can be provided by tail probability $\pi_{\Lambda}^{(t)} = P\left(\Lambda \leq \Lambda^{(t)} | \mathbf{d}\right) \approx P(\chi_{df}^2 \geq -2 \log \Lambda^{(t)})$ where df is the number of estimated parameters in \mathcal{M}_2 .

When comparing Burr to GB2 model, all $\pi_{\Lambda}^{(t)} \approx 0$ \longrightarrow overwhelming evidence against Burr. Related to posterior predictive checking.

- $f(D_j|\theta^{(t)})$ is the sampling distribution (eg GB2) for delay *j* at MCMC iteration t, j = 1, ..., k and t = 1, ..., N
- Compute cdf value $q_j^{(t)} = P(D_j \le D_j^{\text{obs}} | \boldsymbol{\theta}, \boldsymbol{D})$
- Under hypothesis that model fits data adequately: $\pmb{q}^{(t)} = q_1^{(t)}, \dots, q_k^{(t)} \sim U(0, 1)$
- Obtain *p*-value $\pi_Q^{(t)}$ for compliance with U(0, 1) at each MCMC iteration (e.g. KS g-o-f test)
- π_Q = π⁽¹⁾_Q,...,π^(N)_Q is sample from post distn of π_Q and is used for evidence against fitted model

Posterior distns of *p*-values (cont)

Apply to simulated data (k = 500)

With observed data (k = 19, 127)

