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MTPL application

e Motor Third Party Liability (MTPL) insurance in European country
between 1995 and 2010.

@ 837 claims, 60% not closed in 2011.
@ Accident date known in present case study

o All payments, respectively incurred loss data, for a given claim relating
to the same development year aggregated in a single claim point,
respectively incurred data point

o Average reporting threshold set at 154 508

@ Indexed cumulative payments and indexed incurreds are available per
year
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MTPL example

Build upper bounds on total claim amount using incurreds
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Figure: 4 MTPL claims: cumulative indexed payments (full line) and indexed
incurred values (dashed line)
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MTPL data; 340 fully developed claims

CY A, non-cens=340, cens=497 CY A, non-cens=340

015

10g(p/(1-p))
010

005

0.00

0 5 10 15 20

Number of years before ful development

Figure: Incurreds and log-odds p (1 — p = proportion reported but not settled
(RBNS) against accident year (left); histogram years before full development for
closed claims (right)
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Censoring in (re)insurance

Present Time ® Accident
'
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Figure: Claim development scheme
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Censoring in MTPL case

Total loss amount X and number of development years nDY" at 31/12/2010
are right censored for claims non-developed at 31/12/2010
X and nDY are censored or not censored at same time

CY A, non-cens=340
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Figure: Kaplan-Meier estimator for the distribution function of the number of
development years
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MTPL data: use of 'Ultimates’

Ultimates computed by company using 'own’ model
Statistical analysis based on Ultimates ?

CY A, non-cens=340, cens=497
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Figure: Ultimates versus incurred losses with unit line
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Objectives of this study

@ Extreme value analysis of X

@ Global fits for risk analysis that does not only focus on extreme events
@ Model loss data to

e Set insurance premiums;
o Calculate risk measures (VaR, TVaR, ...);
o Determine capital requirements for solvency regulations;

o Set optimal retention level for reinsurance.
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Classical EVA for non censored data

Notation: sample Xy,..., X, ordered X, < ... < X, 1, < ... < Xy

)

Pareto-type distribuations

1— F(z) = 2 Y¢L(x), L slowly varying L(zt)/L(t) — 1 as t — oo

Hill estimator of & Hy,, = k™! 25:1 log )g’(’%*:”

@ using X,,_j, for ¢, and empirical distribution function F, estimating

—&ast— o0

@ estimating slope of log-log plot which is ultimately linear near k largest
observations

. T . Lo 1 (X, —1/¢6-1
@ maximum likelihood estimator maximizing 1y, ¢ 3 (TJ>
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Random right censoring, Kaplan-Meier

@ Observations
(ZZ,AZ),’L = 1,...,TL

with
Z; = min(X;, C;),C; censoring variables

_ 1 if non-censored
B 0 if censored (RBNS)

@ Random right censoring: X; and C; independent
o Kaplan-Meier (1958) estimator FKM

1-FRM(z) =11 oL Ai—H - _Bin_
T Zinse n—it+1) ~ Hnsr n—i+1
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EVA for random right censored data

Both X and C Pareto-type distributed: £x,&c > 0
o Likelihood approach: Beirlant et al. (2007), Einmahl et al. (2008)

N l/e-1) A NV R
et (2 {3

Hill estimator adapted for right censoring

HD = }ch with pp=k=1 Y A
Zi>Zn—kn
Pr. proportion of non-censored data within top k£ observations
o Bardoutsos et al. (2016): bias reduced version
e Estimation of [ (1 — F(u))u'du/(1 — F(t)
Worms and Worms (2014)

k - —
H(CQ) = ZJ:I <1 B FKM(Zn_]+17n)) (log Zn_j+17n - log Zn—j,n)

k,n 1 FKM(Zn—k,n)
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EVA adapted for censoring

Pareto QQplot, claims of CY 2, non-cens=340, cens=497
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Figure: Pareto QQ-plot adapted for censoring (left) and Hill estimators
aY H,ici) and bias reduced version adapted for censoring (right)

k,n

& too big!  Condition of random right censoring fulfilled? Incurreds ?
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Solution 1: Splicing tail fit and mixed Erlang with interval censoring

Tom Reynkens
@ Densities f{ and f5 and corresponding CDFs Fy and F3.

o Lower truncation at t!, splicing point ¢

o Transform to valid densities on the intervals [t!, ] and [t, cc]:

@ e
fi(e) = A TR T STst
0 otherwise,

fala) = {lfzfg @ i<
0 otherwise.
Splicing density
0 if ¢ <t
f(z) = ¢ nfi(x) iftl <oz <t
(1 —m)fa(x) ift <
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Solution 1: EVA for interval censored data

o Turnbull (1976) estimator FTB of Fy: adaptation of Kaplan-Meier
estimator to interval censoring

e Estimators for E(X — t|X > t) and E(log X — logt|X > t):

J7(1 = ETB (u))du
(1— ETE(t))
ftoo(l — FEB u))u~tdu
(1— ETB(1)

mean excess function el B(t) :=

Hill functional HIB(t) :=
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Solution 1: building upper bounds for X; based on incurreds

o Cumulative payment claim ¢ in 2010: X;
@ Incurred value of claim i at development year DY = j: I;;
o Rji=% i=1...,n;,j=1,...,15

J5t

@ Estimate endpoints ) of censored data sets R;;, i = 1,...,n;, per
DY (Beirlant et al. (2007), Einmahl et al. (2008))

@ Upper bounds for censored X; given nDY010,; = j: M;1;;
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Solution 1: EVA for MTPL with interval censoring

Mean excess plot Hill estimates of EVI
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Figure: mean excess plot based on interval censored data (left); Hill plots adapted for interval
censoring with upper bounds by incurreds , incurred XM, no upper bounds (right)
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Mixed Erlang distribution

e Mixture of Erlangs (ME) with common scale parameter § > 0.

@ Density of the Mixed Erlang distribution

rj—1 7:13/9

fi(z;a,r,0) = Z ]9”1 =1 Za]fEx r;,0) for x > 0.

o Shape parameters r = (r1,...,7)): positive integers with 1 < ...

o Mixing weights & = (a1, ..., an).
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Solution 1: MTPL splicing model with interval censoring
(incurreds directly )

Splicing ME Pareto
7 =0.873 (0.171,0.829) & = 0.438
tt=0 = (1,4)
¢ = 500000 é = 55227

1-F(x)
~log(Fitted survival probability)
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Figure: Survival plot and PP-plot on — log-scale of fitted model using incurreds as
upper bound (1995-2005)
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Solution 1: MTPL splicing with interval cens.(incurreds x1/; )

Splicing ME Pareto
7 =0.777 = (0.155,0.845) & = 0.506
t'=0 =(1,49)
¢ = 500000 é = 63410

~log(Empirical survival probabilty)

Figure: PP-plot on — log-scale of fitted model using incurreds xM;
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Solution 1: comparing three splicing models

Comparing random right censored model and interval censoring using
incurred, and incurred xM;

Figure: Size of confidence intervals (left) and estimated survival functions (right)
using incurreds, incurreds xM;, and no upper bounds (KM)
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Solution 2: Nonparametric regression with censoring

Both response X and covariate DY censored:

Z; = min(X;, Ci(2))
nDYyo; = min(nDY;,C\V)

)

Akritas and Van Keilegom (2003):
if X and CV) are conditionally independent given n.DY

A
R _ Wn,i(d; hn)
1- FX|nDY(w’d) - H (1 a Z?:l Wi (d; hn)I{Z; > Zz})

Zi<x

with

K (i) 5 K (e ) if A =1

Wmi(d; hn) = .
0 if AZ =0.
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Solution 2: Pareto QQ-plots with censoring given nDY = d

Setting d = 1,3,5,...,15, K bi-weight kernel, and h = 15

Pareto QQ-plots adapted for censoring per chosen d value

(— log (1 - FX|nDY(Zn—j+1,n|d)) ,log Zn—j+1,n> s J=1...,n

log(Cumulative Indexed Paid)
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Solution 2: Hill type estimator with censoring given nDY = d

H) (nDY = d)

n
f;szyn (1 - FX\nDY(y|d)) %
1-— FX|nDY(Zn—k,n‘d)

AV
k TL—j W'L,n(d:hn) Zn, i+1,n
ijl (H’L:1 [<1 - 1_2;;11 Wl’n(d;hn)) ] ]-Og Znij_,n >

A
n—k Wi n (dshn)
Iz [(1 S Wl,n(d;hn)) ]

(1)
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Solution 2: Hill type estimator with censoring given nDY = d

gamma
1
L
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To be continued

Bias reduction for censored regression
Splicing for full modelling under censored regression

See also approach by Pigeon and Denuit (2014)
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